ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: PHYSICAL AND CHEMICAL SCIENCES

SECOND SEMESTER EXAMINATIONS: 2015/2016 ACADEMIC SESSION

COURSE CODE: CHM 204

COURSE TITLE:

PHYSICAL CHEMISTRY I

DURATION: 2.5 HOURS

HOD's SIGNATURE

moscecco

TABLE OF CONSTANTS:

Speed of light c, $2.997 \times 10^8 \text{m/s}$

Faraday constant F, 96500 C/mol

Gas constant R, 8.314JK mol

Gas constant R, 8.314 x 10° Lbar K mol1

Avogadro's constant Na, 6.022 x10²³ mol¹

Elementary charge e, 1.602 x 10⁻¹⁹C

Boltzmann constant k, 1.38 x10⁻²³J/K Planck's constant h, 6.626 x10⁻³⁴ Js,

Atomic mass unit u, 1,661 x10⁻²⁷kg

INSTRUCTIONS: ATTEMPT QUESTION ONE AND ANY OTHER THREE QUESTIONS

QUESTION ONE IS COMPULSORY

1. QUESTION ONE

- a. State the van der Waals equation for pressure and explain the physical meaning of the parameters in terms of the pressure and volume of a gas. [4marks]
- b. Define the following thermodynamic quantities

[6marks]

- i. Open, Isolated, and Closed Systems
- ii. Surrounding
- Reversible and irreversible changes
- c. Explain concisely how the body utilizes its internal energy [3marks] d. State the Zeroth, first and second laws of thermodynamics.
- [3marks] e. Calculate the diffusion coefficient of haemoglobin in water at 298K (approximated as spherical), of viscosity η is 0.891kgm⁻¹s⁻¹and radius 3.55nm. [3marks]
- State the Ostwald dilution law

[2marks]

g. State the assumptions of the kinetic theory of gases

[3marks]

- h. State the conditions under which ΔH and ΔU for a reaction involving gases and/or liquids or solids identical [3marks]
- State the factors that affect rates of reaction

[3marks]

Given the table below, Determine with respective to A and B the order of reaction and the rate constant of the reaction. [3marks]

[A]m	[B]M	Initial rate Ms ⁻¹
2.30×10^{-4}	3.10x10 ⁻⁵	5.25x10 ⁻⁴
4.60×10^{-4}	6.20×10^{-5}	4.20x10 ⁻³
9.20×10^{-4}	6.20×10^{-5}	1.70x10 ⁻²

2. QUESTION TWO

- a. Explain why the heat capacity a body at constant pressure is greater than its heat capacity at constant volume. [1mark]
- b. Predict the following heat changes

i. Isothermal heat

[1mark]

ii. Isobaric heat

[1mark]

iii. Isochoric heat

[1mark]

iv. Adiabatic heat [1mark]

c. Calculate the change in entropy of the surrounding, total entropy and entropy of the system for one mole of an ideal gas isothermally compressed at 300K from a volume of 25L to 10L. [5marks]

3. QUESTION THREE

The evolution of life requires the organization of a very large number of molecules into biological cells. Does THE FORMATION OF LIVING ORGANISMS violate the second law of thermodynamics? Present detailed arguments to support your clearly stated conclusions. [10marks]

4. QUESTION FOUR

- a. Calculate the work each of the processes when 3.00mol an ideal gas expands isothermally along three different paths, [6marks]
- i. Reversible expansion from $P_i = 35.0$ bar, $V_i = 6.50$ L to $P_f = 10.50$ bar
- ii. A single-step expansion against a constant external pressure of 10.50bar
- iii. A two-step expansion consisting initially of an expansion against constant external pressure of 22.0bar, P=P_{external}, followed by an expansion against a constant external pressure of 10.50 until P=P_{external}
- b. For which of the irreversible process in (a) is the magnitude of work greater [1mark]
- c. Discuss the molecular interpretation of Trouton's rules. [3marks]

5. QUESTION FIVE

a. The standard reduction potential of cytochrome c which carries an electron from Q – cytochrome c oxidoreductase to cytochrome c oxidase is 0.15V and free energy of the reducing oxygen to carbondioxide is -30kJ/mol. If the overall equation of this redox reaction is written as [4marks]

$$OH_2 + Fe^{3+}(Cyt c) \rightarrow Q + Fe^{2+}(Cyt c) + H^+$$

- i. how many electrons are involved in the redox reaction
- ii. balance the equation for the reaction
- iii. Write a shorthand notation for the cell reaction
- b. The half-life of decomposition of N₂O₅ is 4.05x10⁻⁴s. How long will it take for N₂O₅ to decay to 75% of its initial value? [3marks]
- c. Define the following
- i. quantum yield for a photochemical reaction

[1mark]

ii. enzyme turnover number

[1mark]

d. Write an expression for the rate of the shown in the equation below [1mark]

$$2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$$

6. QUESTION SIX

a. Explain with equations the different steps involved in this photochemical reaction.

 $HI + h \upsilon \rightarrow H' + I'$ and deduce its stoichiometric quantum yield. [4marks]

b. The kinetic data of an enzyme catalysed reaction is given in the table below. Determine Michaelis constant ' K_m ', catalytic constant K_2 and the catalytic efficiency ε for the enzyme at 0.5° C given that the initial enzyme concentration is 2 nM. [6marks]

Rate(mmoldm ⁻³ s ⁻¹)	2.78×10^{-5}	5.00×10^{-5}	8.33×10^{-5}	1.67×10^{-5}
[S] (mmoldm ⁻³)	1.25	2.5	5.0	20.0